
Ad Injection at Scale: Assessing Deceptive Advertisement Modifications

Kurt Thomas�, Elie Bursztein�, Chris Grier�, Grant Ho†, Nav Jagpal�, Alexandros Kapravelos5,
Damon McCoy‡†∗, Antonio Nappa§◦, Vern Paxson†∗, Paul Pearce†, Niels Provos�, Moheeb Abu Rajab�

{kurtthomas, elieb, nav, niels, moheeb}@google.com {grantho, vern, pearce}@cs.berkeley.edu
antonio.nappa@imdea.org chris@databricks.com damon@cs.gmu.edu kapravel@cs.ucsb.edu
�Google †University of California, Berkeley ∗ International Computer Science Institute

‡George Mason University � Databricks ◦ IMDEA Software Institute
§Universidad Politécnica de Madrid 5 University of California, Santa Barbara

Abstract—Today, web injection manifests in many forms, but
fundamentally occurs when malicious and unwanted actors
tamper directly with browser sessions for their own profit. In
this work we illuminate the scope and negative impact of one
of these forms, ad injection, in which users have ads imposed
on them in addition to, or different from, those that websites
originally sent them. We develop a multi-staged pipeline that
identifies ad injection in the wild and captures its distribution
and revenue chains. We find that ad injection has entrenched
itself as a cross-browser monetization platform impacting more
than 5% of unique daily IP addresses accessing Google—tens
of millions of users around the globe. Injected ads arrive on
a client’s machine through multiple vectors: our measurements
identify 50,870 Chrome extensions and 34,407 Windows binaries,
38% and 17% of which are explicitly malicious. A small number
of software developers support the vast majority of these injectors
who in turn syndicate from the larger ad ecosystem. We have
contacted the Chrome Web Store and the advertisers targeted
by ad injectors to alert each of the deceptive practices involved.

I. INTRODUCTION

With the advent of the cloud, web browsers now arbitrate
access to a vast breadth of information, social interactions, and
sensitive personal data stored remotely on the Internet. This
evolution—where browsers are now analogous in function to
operating systems—has lead to an entire new class of security
threats facing users. Malicious and unwanted actors tamper
directly with browser sessions to profit from: redirecting
search traffic; inserting rogue tracking pixels; hijacking session
cookies to spam email contacts and online social networks;
and stealing personal and banking data. We refer to this broad
category of threats as web injection.

Within this ecosystem, ad injection reigns as one of the most
lucrative strategies for monetizing browser traffic. Popular ex-
amples include public WiFi portals that tamper with in-transit
HTTP content to inject ads [7], [22]; and the Yontoo browser
plugin which modified 4.5 million users’ private Facebook
sessions to include ads that earned Yontoo $8 million [21],
[30]. These scenarios highlight that ad injectors skirt the
line demarcating legitimately acquired traffic versus synthetic
traffic generated via automated click fraud [8], click hijack-
ing [1], [26], and impression fraud [32]. This distinction is
critical—most ad injectors are potentially unwanted programs,
not malware.

In this work we illuminate the negative impact of ad
injection on users and expose the structure of the ad injection
ecosystem. Of over 100,000 triaged Chrome user complaints
in July, 2014, nearly 20% were related to ad injection—the
single largest source of frustration. Our contributions consist
of (1) measuring the volume of browser clients impacted by ad
injection; (2) evaluating the relationship between ad injection
and malicious or unwanted software; and (3) identifying the
intermediaries and advertisers that support ad injection.

To conduct our study, we develop a multi-staged pipeline
that captures ad injection’s distribution and revenue chain. The
pipeline starts with a client-side DOM scanner that identifies
and reports the presence of rogue ad elements. We deploy
this scanner on a subset of Google websites, collecting over
100 million client-side reports from a period spanning June 1–
September 30, 2014. Next, we dynamically execute 25 million
binaries and 1 million extensions in search of the same ad
injectors we observe impacting clients. In the process, we
analyze the techniques each ad injector uses to manipulate
DOM content and identify the scope of properties that injectors
affect. Finally, we dynamically execute a sample of injectors,
automatically triggering the injector’s logic to fetch ads and
discover the intermediaries involved.

Our results reveal that ad injection has entrenched itself as
a cross-browser monetization platform that impacts tens of
millions of users around the globe. Our client-side telemetry
finds that 5.5% of unique daily IP addresses visiting Google
properties have at least one ad injector installed. The most
popular, superfish.com, injects ads into more than 16,000
websites and grossed over $35 million in 2013 according to
financial reports [16]. We find that all of the top ad injectors
are organized as affiliate programs that decouple advertisement
selection from third parties responsible for taking hold of
a client’s browser. We enumerate the top affiliates for each
program and determine most are popular browser plugins such
as ShopperPro, Yontoo, and PlusHD. Consequently, we find ad
injection affects all prominent operating systems; we observe
injections in 3.4% and 5.1% of pages served to Mac and
Windows users, respectively.

Injected ads arrive on a client’s machine through multiple
unwanted and potentially malicious vectors. Our analysis
pipeline flagged 50,870 Chrome extensions as unwanted ad

(a) Google (b) Amazon (c) Walmart

Figure 1: Sample of ad injection on different search and shopping properties. None of the ads displayed are organic to the page.

injectors, 38% of which were outright malware. Extensions
aggressively pursue injection profit vectors: 24% also spam
Facebook and 11% hijack search queries. While Google
previously disabled most of these deceptive extensions, we
identified 192 with over 14 million users that were still active.
We reported these to the Chrome Web Store, who confirmed
they violated the Web Store’s policies around deceptive ad
injection1 and subsequently disabled the extensions. A similar
picture emerges for 34,407 Windows binaries we flagged for
ad injection, 17% of which are malware. Many of these act
as staged installers that in turn “side-load” extensions, while
others install proxies that tamper with in-transit requests.

The ad injection ecosystem profits from over 3,000 ad-
vertisers including Sears, Walmart, Ebay, and Target, who
unwittingly pay for traffic from injectors. These advertisers
rarely have insights into the provenance of traffic because their
perspective is limited to only the last hop in a convoluted
web of intermediaries, which makes it difficult for brands
to protect themselves from traffic sourced from ad injectors.
Alternatively, we find that traffic enters the ad ecosystem
through a small bottleneck of intermediaries run by ShopZilla,
DealTime, and PriceGrabber. We are currently reaching out
and alerting the advertisers and intermediaries impacted by
traffic from ad injectors.

In summary, we frame our key contributions as follows:
• We develop a client-side technique that detects tens of

millions of instances of ad injection impacting Google’s
users. Any website can re-use this technique.

• We conduct a detailed investigation of ad injection binary
and extension delivery mechanisms.

• We detect and report 192 deceptive Chrome extensions
impacting 14 million users; all have since been disabled.
Our techniques for catching these extensions are now
used by Google to scan new and updated extensions.

• We identify the bottlenecks in ad injector revenue chains
and are reaching out to the advertisers and intermediaries
impacted by the deceptive practices involved.

1We note that ad injection, when properly disclosed to users, is not explicitly
prohibited by the Chrome Web Store.

II. BACKGROUND

We begin by defining ad injection as used throughout this
paper. We provide a number of real examples that capture the
browsing experience of users impacted by ad injection before
discussing the revenue model involved.

A. Characterizing Ad Injectors

We broadly refer to ad injectors as any binary, extension, or
network ISP that modifies a page’s content to insert or replace
advertisements, irrespective of user consent. This definition
notably excludes programs that remove advertisements (e.g.,
ad block software). Ad injectors can negatively impact a
user’s browsing experience, security, and privacy. We show
that ad injectors frequently monitor all of a user’s browser
activities—including page interactions and search queries—
and report these behaviors to third parties for tracking and
advertisement selection. This process increases page load
latency while injectors fetch numerous third-party scripts and
generate XHR requests for ad content. Similarly, injectors
degrade page quality by including spurious “search results,”
keyword highlights, or fly-in banners, many of which are
irrelevant to the page and overwhelm the original content.
Finally, as the provenance of ads is no longer controlled
by a page’s owner, injectors can expose users to irreputable
intermediaries serving spam and malware. This tampering is
invisible to the user making it appear as though the webpage
was culpable rather than the ad injector, potentially degrading
brand reputation.

B. Examples of Ad Injection User Experience

Once an ad injector takes hold of a client’s browser session,
a vastly different web experience emerges, a sample of which
we show in Figure 1. None of the ads displayed in the
figures—even those mimicking the page style—are organic;
all originate from a single extension installed on the client’s
browser. The examples shown are particularly egregious: the
injector includes banner ads and fake search results that
relegate all original page content beyond the browser’s screen
size. The same extension also hijacks a user’s clicks and
redirects the browser to product survey pages. “Uninstall”

Figure 2: Workflow of our ad injection detection and analysis pipeline. We scan the client-side DOM of visitors to Google websites and
report all injected elements (Ê). We identify binaries and extensions that exhibit these behaviors (Ë) and execute them in isolation to click
on the resulting injected ads to enumerate advertisers and affiliates (Ì).

options that sometimes accompany ads on the page instead
redirect the user to install a multitude of bundled software
packages. These practices highlight the often deceptive nature
in which ad injectors operate.

C. Revenue Model

Ad injectors act like publishers in the traditional advertising
ecosystem, pulling ads directly from advertising exchanges
or affiliate programs (which we refer to as “intermediaries”).
Relevant revenue models include cost-per-click, cost-per-mille
(impression), and cost-per-acquisition (sharing profit from
product sales). However, where traditional publishers have to
generate popular content to attract users, ad injectors have
complete control over all content that a client’s browser
renders. Consequently, injectors expose users to rogue ad-
vertisements as they browse; ad networks receive legitimate
traffic; and the ad injectors, advertisers, and ad networks profit.
However, what is unapparent to intermediaries throughout this
process is the negative impact of ad injection on a user’s
browsing experience and the diversion of funds from webpage
owners who have little recourse in the matter.

III. METHODOLOGY

We next turn to our system and data sources for studying
the end-to-end ad injection ecosystem, outlined in Figure 2.
We begin by Ê scanning the client-side DOM of visitors to
Google websites to identify the side-effects of ad injection;
Ë dynamically executing binaries and extensions in search
of the same side-effects; and Ì executing ad injectors in
a contained environment while visiting numerous webpages
to harvest advertisement clickchains and analyze the entities
involved. For each of these components, we detail our design
decisions, implementation, and any limitations or biases of our
approach.

A. Detecting Client-side DOM Injection

Ad injectors rely on inserting rogue elements or modifying
existing elements in a client’s local rendering of HTML. We
detect these artifacts by embedding a script in each served
page that reports on the integrity of the client’s DOM. Our
script’s payload contains a whitelist of domains and JavaScript
handlers that we know a priori to appear in an untampered
copy of the page. Once a pre-defined wait period elapses or

when the browser signals a JavaScript page unload event,
the payload scans the local DOM and identifies all <a>,
<script>, and <iframe> elements on the page. If any of
the elements identified violate the whitelist or have modified
JavaScript events, we add them to a report returned to the
web server. In the event we detect no DOM alterations, we
return an empty report. This report also includes the URL of
the page visited, the browser’s user agent, and the IP address
of the client (used only for geolocation purposes and client
population estimates). We deployed our system on a select
number of Google websites from June 1–September 30, 2014.
The experiment targeted a random sample of Chrome, Firefox,
and Internet Explorer desktop users for all operating systems
and geographic regions. In total, we collected telemetry data
on 102,562,842 page views.

We note that this technique detects all such DOM alter-
ations, not just those caused by ad injectors. We rely on a
post-report filtering phase to exclude browser toolbars, anti-
virus engines, or other programs that extend the behavior of
pages. This filter leverages the fact that 89% of tampered views
contain a rogue (non-whitelisted) script. We key in on which
scripts inject ads—which we refer to as injection libraries—
and in the process contextualize the other rogue URL and
iframe elements that appear in our reports.

To simplify this process, we narrow our analysis to only the
most popular scripts. Accordingly, we first normalize scripts
to strip out any URL parameters. We then rank the scripts
in order of the number of client DOMs they appear in. This
ranking adheres to a Zipf-like distribution, shown in Figure 3.
The single most popular script appears in 39% of reports and
the top 100 in 74% of all tampered clients. The tail consist
of over 19,315 scripts from 8,527 domains. Some of these
top scripts are popular support libraries like jQuery used by
benign extensions whereas others belong to ad injectors.

To filter out extraneous scripts, we manually reviewed the
top 100 scripts and flagged them as injection libraries based
on the script’s content. In total we flagged 65 of the top 100
scripts as injection libraries. Of these, 31 actively cloaked
against Google (e.g., network requests for the scripts returned
a 404 error or empty DNS record to Google IP addresses
or resolvers, but not to requests from independent vantage
points). We offer a more detailed treatment of each script’s
behavior and the coverage this step provides in Section IV.

●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●●

●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●

●

●

●●●●●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●●

●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●●

●

●●●●●●

●

●

●

●

●●

●●

●

●●●

●●●

●

●

●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●●●

●●

●●●●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●●

●

●

●●●●●●●●●●●

●●●

●●

●

●

●

●

●●●●●●●●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●●

●●●●

●●●●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●●

●

●●●

●

●●

●

●

●●●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●●●

●●

●

●

●●●●

●●

●

●

●●

●

●●●

●

●●

●

●●

●

●●

●●

●●●

●

●●●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●●●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●

●●

●●●

●

●●

●

●●●●

●●

●●

●●●

●

●●●

●

●

●

●●

●●●●

●●●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●●

●●●
●

●

●

●

●

●

●●
●●

●

●●●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●●

●

●●

●●

●

●●●

●

●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●●
●
●●●

●●

●

●
●

●
●
●
●
●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●

●
●

●●

●

●

●

●
●
●
●
●

●

●●

●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

●
●●

●

●

●
●●

●

●
●

●

●
●

●

●●
●
●
●

●

●

●

●

●●

●
●●
●

●
●

●
●
●

●
●
●
●
●
●
●●
●

●

●

●
●

●

●
●

●
●

●

●

●●
●
●

●
●
●●

●
●
●
●

●

●
●

●
●
●

●●●
●

●

●
●
●
●●
●●●●●●

●
●
●
●
●
●●
●●
●
●

●●
●●●●

●●

●
●●
●●

●●
●
●●●●

●●
●●

●●
●●

●●

●●

●
●

●

●

●

10
1

10
3

10
5

10
7

10
1

10
3

10
5

10
7

Number of pages with script

N
u
m

b
e
r

o
f
s
c
ri

p
ts

Figure 3: Zipf-like distribution of script popularity in tampered DOM
clients. The top 10 and top 100 scripts appear in 56% and 74% of
tampered DOMs respectively.

Design Decisions & Related Approaches: When we designed
our client-side detection, we opted to whitelist rather than
blacklist page elements as the former requires no knowledge
of active threats and is more robust to changes in ad injection
techniques over time. Our strategy is similar to “web tripwires”
used to detect in-flight page changes [29]. We expand on
the core idea of web tripwires and identify specific injected
elements, rather than simply reporting a binary determination
of whether tampering occurred.

Our system is also similar to Content Security Policies
(CSP) supported by modern browsers [36], which rely on
server-specified whitelists for preventing or reporting when a
client’s browser requests cross-origin scripts, iframes, or data
(typically to prevent cross-site scripting attacks). We opted
to rely on a JavaScript payload as it is simpler to deploy as
an experiment, allows finer-grain reporting detail compared
to CSP (e.g., page elements, not just cross-origin requests),
and does not rely on browser compatibility beyond JavaScript.
At the time of writing, CSP is only supported in Chrome,
Firefox, and Safari; enforcement in Internet Explorer remains
in development. A second motivation for JavaScript over CSP
is that there is an existing incentive for extensions, binaries,
and networks to tamper with CSP headers2 due to enforcement
policies that might otherwise prevent ad injection. Despite
these shortcomings, we believe that CSP is a viable fallback
for detecting ad injection in the absence of a more robust
experimentation framework.

Ethics and Privacy: Our data collection technique is anal-
ogous to Content Security Policies, which modern browsers
use to report client-side telemetry of page integrity to website
operators. Prior to deploying our system, Google’s internal
privacy review board (similar to an IRB) vetted and approved
our architecture and the data it collects. Part of the restrictions
placed on our system include never analyzing data in non-

2Web servers specify a CSP policy in HTTP headers for pages served to a
client. Any intermediary with sufficient network control can strip or modify
these values.

aggregate form; never tracking or analyzing the behavior of
individual users; never sharing raw data outside of Google; and
setting a short lifetime on the data collected after which only
aggregates could be stored. We also verified that our system
is compatible for all clients that we collect data from (e.g.,
there is no degradation in the client’s user experience due to
crashing) and that our system never interferes with ad injectors
or tampers with the client’s DOM, but only provides a passive
measure of ad injection in the wild.

B. Identifying Distribution Vectors

We correlated the ad injectors we observed in client traffic
with potential installation vectors, including extensions, bi-
naries, and network tampering. To this end, we cast a wide
net and dynamically analyzed over 1 million extensions and
25 million binaries in search of ad injectors. We used a
secondary technique for identifying network-based injectors.

1) Browser Extensions: To analyze ad injection conducted
via browser extensions, we relied on WebEval—Google’s
internal system for reviewing Chrome extensions which we de-
scribe below—and Hulk [18]—an independent system for de-
tecting malicious Chrome extensions. We obtained extensions
from three sources: crawling the web; extensions installed or
side-loaded by binaries provided by Safe Browsing (described
shortly); and all extensions in the Chrome Web Store. We
used WebEval to evaluate all three sources—totaling over
1 million extensions created between March, 2011–October,
2014—while Hulk’s analysis focused on 91,660 extensions it
crawled from the Web Store.

We outline WebEval’s analysis pipeline in Figure 4. An
extension’s evaluation consists of two phases: (1) a static
scan of the extension’s HTML, JavaScript, and manifest per-
missions; and (2) a dynamic evaluation, which loads a fresh
copy of Chrome with the extension installed and subjects the
extension to a barrage of behavioral suites. The full details of
WebEval’s architecture are beyond the scope of this paper, but
we highlight the features relevant to our ad injection study.

Static Analysis: WebEval’s static analysis module identifies
the use of sensitive manifest permissions such as intercepting
web requests (e.g., modifying incoming and outgoing network
traffic to the browser), unrestricted access to cookies, or the
ability to prevent uninstalling an extension. It also heuristi-
cally scans for code obfuscation, the inclusion of JavaScript
eval(), and embedded URLs for remote resources (e.g.,
scripts, images). Static signals also include reputation data
surrounding the extension developer, the age of the extension,
the timeline of installs for the extension, and whether installs
originate organically from the Web Store. Our install statistics
are limited to aggregate counts (we have no details on which
clients install an extension).

Dynamic Analysis: During dynamic analysis, WebEval
launches a virtualized Windows environment and installs
the extension under evaluation in an instrumented Chrome
browser. The testing environment captures all Chrome API
calls, DOM method calls, and network requests made by the

Figure 4: WebEval’s analysis pipeline for scanning Chrome Web
Store extensions.

browser during execution. WebEval then subjects the browser
to behavioral suites that include querying Google Search and
visiting dummy pages laden with advertisements to determine
whether the extension alters the browser’s DOM (e.g., injects
new elements or replaces existing ads). WebEval specially
constructs behavioral suites to replay network requests from
a cached network trace previously produced by loading web
pages in the same environment, but without the extension
installed; any new network requests made by the extension
are allowed to access the external Internet. This technique—
similar to recording and replaying virtual machine system
calls [13]—allows WebEval to identify all network requests
made specifically by an extension rather than a web page.
Furthermore, it prevents page dynamism from introducing
false positives when detecting DOM-level alterations. As
pages become stale over time WebEval periodically updates
its test suites to keep up with content drift.

We combine WebEval’s ad analysis suite and network traces
with similar tests produced by Hulk. We then key in on the
ad injection extensions that we also observe impacting clients
in the wild. In particular, we manually construct a list of all
of the top 65 injection libraries we observe correlated with
ad injection on Google websites (discussed in Section III-A)
and scan the network traces produced by WebEval and Hulk
for these same scripts. If we observe network requests for
injection libraries and the presence of rogue DOM elements,
we label the extension as an ad injector. Of the extensions we
analyze, we classify a total of 50,870 as ad injectors.

2) Binaries: We rely on Google’s Safe Browsing infras-
tructure to dynamically scan hundreds of thousands of binaries
daily, the details of which are previously described by Rajab
et al [28]. Safe Browsing fetches binaries via crawls of
the Internet as well as from payloads delivered by websites
serving drive-by downloads in the wild [27]. As part of Safe
Browsing’s binary analysis, the system loads a virtualized
environment and installs the binary under analysis. The system
then launches Chrome and Internet Explorer and directs each
browser to fetch a suite of websites which includes Google
properties. The system logs all network traffic throughout this

process, actively man-in-the-middling any HTTPS connections
to introspect on packet contents. Similar to our extension
analysis pipeline, we detect binary-based ad injectors by scan-
ning the network logs related to visiting Google websites for
outgoing requests to injection libraries. In total, Safe Browsing
dynamically evaluated over 25 million unique binaries from
February–October, 2014. Of these, we categorize 34,407 as
ad injectors.

3) Network: We use the data produced by our client-side
measurements to detect network-based ad injectors. Mechan-
ically, these actors intercept page content in transit to either
inject scripts or directly inject ad-based DOM elements. We
detect the possibility of such tampering by comparing the
fraction of tampered DOMs that were served over HTTP
versus HTTPS. This approach assumes that a network attacker
does not have a valid certificate to man-in-the-middle HTTPS
connections (and that certificate pinning is not present to
prevent this attack). This approach cannot determine which
network element in particular is responsible for tampering with
a client’s connection.

C. Pinpointing Advertisers and Intermediaries

The ad injection ecosystem hinges on the willingness of
advertisers to pay for traffic from injectors. This involves a tan-
gled web of intermediaries that ultimately connect advertisers
with injection libraries. We unravel this graph by automatically
visiting creatives (e.g., ad text, images, and objects) served by
ad injectors and enumerating all of the parties involved.

As a first step, we need to acquire creatives from ad injec-
tors. One strategy would be to reverse engineer the ad request
protocol for each of the ad injectors we encounter. While semi-
automated approaches exist for extracting gadgets to replay
malware C&C protocols [5], the security community relies
on these techniques to overcome event-based triggers (e.g.,
timing, user interaction) that cause the malware to activate.
In our case, we know the triggers that cause ad injectors to
activate—it is as simple as visiting a web page.

To this end, we dynamically execute Chrome in a vir-
tualized environment with an ad injector installed and then
automatically visit a suite of pages that trigger ad insertion.
This approach elides any complexities surrounding reversing
the protocol of each injection library, executing JavaScript,
priming cookies, or satisfying environment variables or pa-
rameters expected by the ad injector to operate. We select
ad injectors from our feed of extensions, omitting binaries
from the process. As we will discuss in Section V, extensions
provide a better coverage of ad injectors in the wild.

1) Identifying Potential Trigger Pages: In order to generate
a suite of trigger pages that reliably induce ad injection scripts
to fetch rogue creatives, we manually scan the Alexa Top
100 in Chrome, cycling through 14 different ad injection
extensions. This set of extensions provides non-overlapping
coverage of the top injection libraries we observe in the
wild, absent those not contacted by any of the extensions
(or binaries) in our dataset. We specifically choose extensions

that fetch a single injection library as opposed to multiple
libraries as not to conflate the websites targeted by individual
libraries. In total, we visit 1,400 pages and manually identify
the insertion or modification of ads.

Of the Alexa Top 100, we observe in-property injections
into 75% of pages. These websites span search engines
including google.* and yahoo.*; shopping pages including
amazon.*, alibaba.com, ebay.com, and craigslist.org; video
sites including youtube.com, dailymotion.com, and xvideo.com
(adult); and other popular news and media sites. Based on the
most popular websites targeted by multiple injection libraries,
we elect to use google.com, amazon.com, and walmart.com
as trigger pages for inducing ad injector behaviors. These
websites are convenient as we can easily generate a set of 100
representative queries for each site. For Google, we obtain a
list of the top 100 search queries that contain advertisements.
For Amazon and Walmart, each site publishes a leader board
of the top 100 best selling products [2], [35]. While these 300
queries will not provide complete coverage of the long tail of
creatives accessible to ad injectors, they offer a starting point
for understanding the advertising relationships underpinning
injectors.

2) Enumerating Intermediaries: We select a random sam-
ple of ad injection extensions and successively visit each of our
300 trigger pages with each extension installed on a client out-
side Google’s IP space to avoid cloaking. We identify creatives
inserted into each property by extending our client-side DOM
measurement technique. In particular, after each page finishes
loading and a predefined wait expires, we inject a script that
scans all <a>, <script>, <iframe>, <object>, and <div>

elements. For each property we develop a comprehensive
whitelist of JavaScript events, domains, and div classes and
IDs that appear independent of ad injectors, also accounting
for page dynamism. We consider any element that violates this
whitelist as a potential ad to click on. Unlike in our client-side
measurement, we are able to access nested cross-origin content
by running Chrome with same-origin protections disabled. As
such we can observe all injected content, not just that in the
parent frame. This is critical as many intermediaries syndicate
content, with syndication represented by layered iframes where
the lowest layer contains the creative.

We finally uncover the ad revenue chain underpinning a
creative by clicking on one injected ad per page if an ad
is present. During this process we monitor the creation of
new tabs and examine all network traffic produced by Chrome
until the browser fetches the final landing page. We natively
generate clicks rather than via JavaScript in order to support
Flash ads. We repeat this process indefinitely: fetching one
extension from a circular task queue, running it against a
trigger page, and then tearing down the browser session after
each successful click before moving on to the next trigger
page. In total, we generate 114,999 ad revenue chains from 398
distinct extensions. Of these, 62,237 were from ads injected
on Amazon, 37,718 from ads on Google, and 15,044 ads from
Walmart.

Dataset Source Sample Size

Client DOM reports Client-side scan via
Google properties

102,562,842

Unique extensions
Ad injection extensions

Dynamic evaluation
via WebEval, Hulk

> 1,000,000
50,870

Unique binaries
Ad injection binaries

Dynamic evaluation
via Safe Browsing

> 25,000,000
34,407

Ad revenue chains Trigger and click
analysis on Google,
Amazon, Walmart

114,999

Table I: Summary of datasets produced or consumed by our analysis
pipeline.

D. Dataset Summary

We summarize the datasets produced and consumed by
each stage of our pipeline in Table I. In total, we collected
102,562,842 client-side DOM reports through which we iden-
tified the 65 most popular ad injectors. We then statically ana-
lyzed and dynamically executed over 1 million extensions and
25 million binaries in search of these ad injectors, identifying
over 50,870 culpable extensions and 34,407 binaries. Finally,
we executed a sample of the ad injection extensions to uncover
114,999 clickchains to pinpoint intermediaries involved in
supporting ad injection. The remainder of this work focuses
on insights gleaned from each of these datasets.

E. Limitations

1) Client DOM reports: Our design has a number of lim-
itations imposed by vantage points, browser security models,
size constraints, and operating in a hostile environment, which
may bias our technique towards catching specific ad injectors.
While we believe our system can yield meaningful insights,
we are nevertheless cautious to draw conclusions about all ad
injectors in the wild.

Visibility into the Internet: Our experiment’s vantage points
are limited to Google websites. While we confirmed the ad
injectors we identify target many of the Alexa Top 100, and
thus generalize, there may be other ad injectors that tamper
solely with non-Google sites. We believe it is critical for other
websites to repeat our study to capture the full extent of ad
injection in the wild.

Same-Origin Restrictions: Browsers enforce a same-origin
policy that restricts our client-side analysis from accessing
content outside the current page’s origin. Consequently, nested
content in cross-origin frames is invisible to our scanning
beyond the outermost container. As such, our reports may
contain a subset of all <script>, <iframe>, or <a> elements
that browsers render on a page and a narrower perspective on
the ad injectors responsible.

Detecting Modified Events: Our whitelist consists of both
domains as well as JavaScript events associated with page
elements. While this JavaScript whitelist accurately captures
onClick and other explicit onMouse handlers, events added
to elements via the addEventListener method are invisible

to our scanner. This limitation stems directly from the lack of
JavaScript support for enumerating event handlers without de-
bug privileges or intercepting calls to the addEventListener
method (which might otherwise result in race conditions).
As such, some tampered elements may go undetected by our
system.

Whitelist Specificity: We elect for a domain whitelist rather
than a full URI whitelist for both space constraints on the size
of our script payload as well as for contending with highly
dynamic page content where we cannot easily generate a
comprehensive a priori whitelist. Consequently, this approach
will overlook injected elements that direct to whitelisted
domains (e.g., new DoubleClick ads on pages that previously
served DoubleClick ads) or when ad injectors tamper with
URL parameters (in particular affiliate IDs). Again, this may
result in some injected or tampered elements going undetected.

Report Tampering: Our final concern relates to operating in a
hostile environment where we cannot trust a client’s browser,
operating system, or network connection to not interfere with
our scanning or reporting. While we believe this is unlikely as
we deployed our detection scheme over a short period without
any external signs of enforcement (e.g., we never interfere
with ad injectors), we rely on an encrypted delivery and
reporting mechanism that is uniquely keyed per client. (The
details of this mechanism are beyond the scope of this paper.)
We note that such protections will not prevent a determined
adversary, but the delivery mechanism provides a degree of
application-level protection against rudimentary man-in-the-
middle attacks.

2) Binary & Extension Coverage: Our coverage of binaries
and extensions is limited to software that Safe Browsing,
WebEval, and Hulk encounter. For each of these systems,
there is a possibility of ad injection software cloaking against
dynamic analysis or simply not triggering for the tests we
execute. We provide an estimate of our coverage of software-
based ad injection later in Section V.

3) Advertiser & Intermediary Coverage: Our decision to
use 300 Google, Amazon, and Walmart search and product
results limits the scope of creatives that ad injectors may
serve. This restriction in part arises due to the tedious, some-
times manual effort required to construct stable whitelists for
highly dynamic websites. Consequently, we will miss creatives
tailored specifically to the long tail of products, news sites,
or pornographic content. As such, our clickchain analysis
only captures a subset of possible advertising relationships.
Furthermore, we only collect a relatively small sample of
clickchain data to minimize the ad revenue impact we have
on advertisers buying traffic from ad injectors. We make no
effort to obfuscate our IP address or evade any automated
clicking protections used by advertisers.

IV. AD INJECTION IN THE WILD

Ad injection has entrenched itself as a cross-browser mone-
tization platform that impacts tens of millions of users around

Figure 5: Prevalence of ad injection in client-side DOMs, broken
down by browser. Dates are 2014. Gaps in coverage result from
Google deploying our client-side experiment for short periods before
electing for continuous deployment. See text for discussion of the a
and b changes.

the globe. We find that many ad injectors are organized as
affiliate programs. In this model, third parties are responsible
for obtaining installs while ad injection libraries provided
by the affiliate program manage advertisement selection. We
provide a perspective of the most popular injection libraries,
the number of affiliates each program attracts, each affiliate’s
user base, and how programs compete.

A. Prevalence of Ad Injection

Of the client-side reports we collect, we find that 5,339,913
(5.2%) contain evidence of ad injection. If we consider IP
addresses as unique client identifiers, we find that injections
impact a daily average of 5.5% of unique daily IPs.3 Figure 5
contains a detailed breakdown of injection levels over time per
browser.

Chrome, the most popular browser in our dataset, is the most
commonly affected platform (5–8% of page views). During
our measurement, we observed two declines in impacted
Chrome views around mid-June and late-July. We believe the
first drop (a) is related to the Chrome Web Store lockdown
where Chrome prevented side loading extensions on Windows
that were not also in the Chrome Web Store [20]. The second
drop (b) correlates with the enforcement of an updated Chrome
Web Store policy on “single purpose” extensions [19], e.g.,
explicitly prohibiting marketing an extension as a game and
then also surreptitiously performing ad injection on search
results. We note that ad injection, when properly disclosed to
users, is not explicitly prohibited by the Chrome Web Store.
While both policies appear to impact ad injection levels, there
remains a substantial volume of ad injection on Chrome.

For Internet Explorer, ad injection levels have remained
steady, impacting around 2% of page views. Conversely, nearly
6% of Firefox views exhibited signs of ad injection, though

3We note that dynamic leases on IPs and NATing inject a certain noise
into this user estimate. Our data collection policy precludes mechanisms to
uniquely identify clients (e.g., cookies) needed to correct for this uncertainty.

Rank Ad Injection Library Impacted Views Popularity

1 superfish.com 3,751,167 3.92%
2 api.jollywallet.com 2,292,685 2.40%
3 visadd.com 1,337,099 1.40%
4 intext.nav-links.com 1,231,504 1.29%
5 {crdrdpjs, rvzrjs, ...}.info 665,505 0.70%
6 ads.tfxiq.com 472,745 0.49%
7 noproblemppc.com 423,682 0.44%
8 clkmon.com 358,863 0.38%
9 datafastguru.info 294,261 0.31%

10 easyinline.com 206,157 0.22%
11 donation-tools.org 147,368 0.15%
12 rjs.mzcdn.com 127,849 0.13%
13 apimegabrowsebiz-a.akamai... 105,844 0.11%
14 fcdn.smileyswelove.com 94,665 0.10%
15 apibrowsemarknet-a.akamai... 86,722 0.09%
16 apisurftasticnet-a.akamai... 64,785 0.07%
17 jscripts.org 63,345 0.07%
18 apiwisenwizardne-a.akamai... 60,656 0.06%
19 cdn.taboola.com 60,213 0.06%
20 savingsslider-a.akamai... 59,839 0.06%
21 apimyfindrightco-a.akamai... 59,344 0.06%
22 jsutils.net 45,113 0.05%
23 static.dreamsadnetwork.com 24,780 0.03%
24 gyr.mappingsection.net 22,490 0.02%
25 cluster.adultadworld.com 20,846 0.02%

Table II: List of the top 25 ad injection libraries we observe in client
traffic. We combine 224 algorithmically generated domains such as
crdrdpjs.info and rvzrjs.info that all host the same library into a single
grouping for clarity.

this has steadily declined since we began our measurement. We
are unaware of any action taken by Firefox against extensions
or hardening the browser against DOM tampering that would
explain this decline.4

B. Most Popular Injectors

A select few injection libraries dominate the ad injection
ecosystem, detailed in Table II. We find that each injector
is diligent in universally supporting browsers; of the top 25
injectors, all target Chrome, 24 target Firefox, and 23 target
Internet Explorer. Far and away, superfish.com is the most pop-
ular program and appears in 3.9% of Google views.5 Its parent
company markets itself as an image similarity search, with the
injection library offering alternative shopping suggestions in
the form of ads on shopping or search properties a client visits.
The second most popular program is jollywallet.com (2.4%),
which overwrites affiliate parameters for URLs on shopping
sites to monetize cost-per-acquisition revenue sharing models
without actually driving traffic to the shopping partner.6 While
this does not fall directly into our definition of ad injection, we
nevertheless include it in our subsequent analysis as it often
co-occurs with other injection libraries. It is the only affiliate

4We note that the decline in Firefox injection levels is independent of the
browser’s update release cycle. We observed no discernible drop in injection
levels between version changes.

5Subsequent to our study, it emerged that a popular laptop vendor, Lenovo,
had pre-installed Superfish on some of their devices [23]. Our dataset predates
this event, though given the range of installation vectors we observe, we
believe OEM packaging is secondary to installs originating from download
bundles and malware.

6We cannot directly detect affiliate modifications made by Jollywallet with
our current client-side scan. Instead, we detect the injection library that
performs affiliate re-writing to measure impacted clients.

0%

1%

2%

3%

4%

5%

Jun Jul Aug Sep Oct

P
a
g
e
s
 w

it
h
 a

d
 i
n
je

c
ti
o
n

{crdrdpjs...}.info

ads.tfxiq.com

api.jollywallet.com

cdn.visadd.com

intext.nav−links.com

www.superfish.com

Figure 6: Prevalence of the top ad injection libraries in Google pages
over time.

re-writer we encounter in the top 100 injection libraries. We
provide a more detailed treatment of each the top injection
libraries later in Section VII.

Each injection library’s prevalence is constantly in flux,
as outlined in Figure 6. We observe a substantial drop in
superfish.com injections in early August that correlates with
the Chrome Web Store removing deceptive extensions [19].
Conversely, visadd.com has experienced a steady growth from
roughly 0.5% of traffic to about 1.4% at the end of our
measurement. This same period shows a substantial decline for
ads.tfxiq.com and intext.nav-links.com. The process that drives
the adoption or deactivation of injection libraries is unclear,
but the most popular programs appear to actively cultivate a
steady user base to drive revenue.

C. Affiliate Structure of Ad Injectors

When we manually reviewed the top injection libraries we
found that many were in fact organized as affiliate programs.
In this model, affiliates embed the injection library provided
by an affiliate program into a client’s browsing session—
using whatever mechanism available—which then handles ad
selection. The affiliate program in turn pays affiliates for
the volume of traffic or installs they generate. For instance,
superfish.com recently appeared at Affiliate Summit East (a
popular recruiting fair for affiliates), with one of the company’s
employees stating “Let’s meet up to monetize your toolbar or
add on” [4].

We manually reverse engineered the set of URL parameters
associated with affiliate tracking for each of the top ad injec-
tion affiliate programs and then scanned every record in our
dataset to pull out affiliate data. We provide a breakdown of
the total unique affiliates we identify in Table III. We find that
affiliate market shares of each affiliate program’s total traffic
follow a long tail distribution. The top 10% of affiliates control
47–96% of each affiliate programs’ market share, while the

Ad Injection Library # Affiliates Top Affiliate Top Share

superfish.com 494 Crossrider 44%
api.jollywallet.com 114,486 Shopperpro 8%
visadd.com 885 Iwebar 7%
intext.nav-links.com 96 Crossrider 42%
{crdrdpjs, rvzrjs, ...}.info 613 TornTV V9.0 7%
ads.tfxiq.com 479 Sense 8%
clkmon.com 521 Plus-HD-9.4 6%
datafastguru.info 57,983 Browser Shop 10%
easyinline.com 155 Netcrawl 12%

Table III: Affiliate structure of the top ad injectors, the total number
of unique affiliates identified in client-side DOMs, the largest affiliate
by market share, and the market share the they control.

top 50% control 70–99%. This is particularly apparent for su-
perfish.com and intext.nav-links.com where the top affiliate—
Crossrider—controls 42–44% of the market share. Crossrider
is a mobile, desktop, and extension development platform that
enables drop-in monetization via major ad injectors. Crossrider
provides its affiliate ID to ad injectors while separately track-
ing kick-backs to developers. The other top affiliates listed
in Table III are all cross-browser extensions and plugins that
impact Chrome, Firefox, and Internet Explorer.

D. Co-occuring Ad Injectors

The affiliate nature of ad injection creates an incentive for
software developers and network operators to laden impacted
clients with ads supplied from as many affiliate programs as
possible. We observe that 50% of tampered clients fetch at
least two injection libraries per page load and 30% of clients
at least four. To better understand the practice of bundling
multiple injection libraries per client, we calculate the Jaccard
similarity coefficient between the pages impacted by distinct
injection libraries. We show our results in Figure 7. The most
popular program, superfish.com, appears 49% of the time
with jollywallet.com, 33% with visadd.com, and 25% with
intext.nav-links.com. A similar pattern emerges between other
affiliate programs.

This practice maximizes the profit that affiliates earn per
client. As we discuss in Section VII, each injection library has
varying advertising relationships that may or may not monetize
certain traffic (e.g., pornographic content). Similarly, many of
the top injection libraries include a blacklist of properties they
abort tampering with, not all of which are consistent. Affiliates
overcome these gaps in coverage by contacting as many
affiliate programs as possible. We support this conclusion
further in Section V where we observe binaries and extensions
simultaneously installing multiple injection libraries.

E. Understanding the Ad Injector User Base

Ad injection impacts users located around the globe inde-
pendent of the operating system they use. We find that injectors
tamper with 5.11% of pages served to Windows machines and
3.43% of page views on Mac OSX. This indicates that ad
injection is not a Windows binary problem, but rather broadly
impacts diverse operating systems and browsers.

Figure 8 shows a breakdown of ad injection levels per
region, as determined by the geolocation of clients. We note

Figure 7: Overlap between ad injection libraries, as measured by the
Jaccard similarity between the sets of impacted clients.

Figure 8: Impact of ad injection around the globe. South America,
South Asia, and South East Asia have the highest concentration of
injection.

that regions in white either block access to Google (e.g.,
China) or are omitted due to a limited sample size (e.g.,
Central Africa). We observe that South America, South Asia,
and South East Asia are the most frequently affected regions
(8% of views). Conversely, ad injection impacts only 2.6% of
North American views, 3–4.5% of European views, and fewer
than 0.6% of Japanese and South Korean views.

F. Long Tail of Ad Injectors

Our methodology for detecting ad injectors concentrates
on the top 65 scripts used by ad injectors. As we discussed
in Section III, in practice there are 19,315 rogue scripts
appearing in DOM content. We place an upper bound on the
fraction of views impacted by ad injectors in this long tail by
calculating the fraction of all page views that include any script
outside of the 35 in the top 100 we determined to be benign
(Section III-A). In the worst case, if all rogue scripts relate to
injection libraries, it would at most impact an additional 3%
of Google page views irrespective of the browser involved.

V. DISTRIBUTION & INJECTION TECHNIQUES

Injected ads arrive on a client’s machine through multiple
vectors: binaries, extensions, and even network-level tamper-
ing. We correlate each of these distribution channels with
the most prominent ad injectors; delve into the technical
mechanisms that extensions and binaries use to modify client
DOM content; estimate the number of Chrome users impacted
specifically by ad injection extensions; and finally estimate our
coverage of ad injection software.

A. Ad Injector Distribution Channels

In total, WebEval, Hulk, and Safe Browsing identify 50,870
extensions and 34,407 binaries that perform ad injection. New
ad injection software is constantly emerging. Figure 9 shows
a log-scale timeline of new extension and binary variants
throughout October 2013–October 2014. In April 2013, over
1,000 new ad injection extensions were authored. Since that
period, new extensions have steadily declined to roughly 10
per day. Conversely, the arrival of new binaries defies any
trend. The largest peak of over 10,000 new Windows installers
occurred around July 2014, with numbers dropping to roughly
100 per day in October 2014. Of the extensions we identify,
only 10% were ever present in the Chrome Web Store. The
remaining 90% originate from binaries or websites providing
off-market extensions which can no longer be installed on
Windows.7

We provide a breakdown of the most popular ad injec-
tion libraries used by software in Table IV. We find that
49,127 (96%) different extension variants and 33,486 (97%)
distinct binaries contact superfish.com, the first sample of
which appeared back in September 2012. As we observed
in client traffic, the authors of these programs frequently
bundle multiple injection libraries at a time. Of extensions,
50% contact at least two injection libraries, while 30% contact
at least five. Similarly, 80% of binaries contact at least four
injection libraries. We were unable to identify any extensions
or binaries that contacted easyinline.com, likely due to incom-
plete coverage of software in the wild.

B. Dissecting Ad Injection Techniques

1) Extensions: Ad injection extensions rely on the Chrome
permission model [3] to request access to DOM content
and privileged browser resources. We statically analyze the
manifests embedded in each extension to determine which
permissions an extension requests, the details of which ap-
pear in Table V. Permissions consist of a scope as well as
a resource. Of the extensions in our dataset, 100% scope
their privileges to every page a client visits, indicated by
http(s)://*/* or the <all url> scope. This behavior is also
typical of malicious browser extensions [18]. Within this broad
scope, 69% of extensions can potentially prevent uninstallation

7We note that extension side-loading can still occur if the extension is
simultaneously in the Chrome Web Store. The Chrome Web Store team,
however, recently implemented a policy to take action on any extensions that
benefit from installation tactics that deceive the user or otherwise violate the
Unwanted Software Policy.

10

100

1000

10000

Apr Jul Oct

N
e
w

 a
d
 i
n
je

c
ti
o
n
 v

a
ri

a
n
ts

 (
m

d
5
)

binary extension

Figure 9: Arrival rate of new extension and binary variants that
perform ad injection from October 2013–October 2014.

Ad Injection Library Extensions Binaries Earliest Trace

superfish.com 49,127 33,486 Sep 09, 2012
api.jollywallet.com 19,259 28,557 Jul 12, 2013
visadd.com 11,843 13,763 Jan 29, 2014
intext.nav-links.com 17,007 4,881 Jul 26, 2013
{crdrdpjs, rvzrjs, ...}.info 16,381 28,574 Mar 04, 2013
ads.tfxiq.com 248 1 Mar 16, 2014
noproblemppc.com 18,228 28,972 Sep 15, 2012
clkmon.com 27 1 Nov 20, 2013
datafastguru.info 4,221 6 Dec 16, 2013
easyinline.com 0 0 –

Total 50,870 34,407 –

Table IV: Breakdown of extensions and binaries performing ad
injection. We obtain tens of thousands of samples for 9 of the top 10
injectors. We denote the earliest date we identify either an extension
or binary contacting an injection library.

by auto-closing tabs directing to chrome://extensions;
54% can access a client’s cookie for any property; and another
52% can monitor the installation of other extensions.

From this list of permissions, we discern that ad injection
rarely occurs via in-browser network interception denoted by
the webRequest permission (5%) or plugin access to install
new DLLs (2%). Instead, the extensions rely on content
scripts, which are JavaScript files loaded into a page’s context
after the browser renders a document. Independent of the
delivery mechanism, we find that 100% of extensions request
to modify every HTTP and HTTPS page a client visits. With
these privileges, ad injectors add new <script> elements that
fetch remote copies of the most popular ad injection libraries
into every DOM a client renders. These scripts in turn supply
the logic for adding or replacing advertisements. Consequently,
ad injectors can tamper with any page a client visits.

Extensions performing ad injection have a range of other
behaviors. WebEval flagged 24% for spamming a user’s social
network and 11% for hijacking a user’s search queries. Inde-
pendent of our ad injection analysis, WebEval flagged 38%
as malware. These results highlight the tangled nature of ad
injection affiliate programs. Extension authors can bundle ad
injection with any number of other monetization strategies,

Permission Popularity Description

https://*/* 88% Access all https pages
http://*/* 88% Access all http pages
<all urls> 12% Access all pages, including ftp, data

tabs 69% Create or modify tabs
cookies 54% Access cookies for permitted sites
management 52% Control removal of extensions

webRequest 5% Intercept network requests
webNavigation 3% Notifications for when pages change
plugin 2% Install DLLs or other binary files

Table V: Sensitive permissions requested by extensions performing
ad injection. Injectors can manipulate any page a client visits, modify
cookies, and prevent uninstallation.

including those traditionally relied on by the malware ecosys-
tem.

2) Binaries: We observe two predominant strategies for
tampering with DOM content via binaries: intercepting net-
work requests and side-loading an extension. Of the binaries
we detect as ad injectors, 86% modify the Window’s registry
key for HKCU\software\microsoft\windows\currentve
rsion\internet\proxyserver to install a proxy. Without
additional support from DLL injection or installing a new
certificate, this proxy cannot tamper with HTTPS connections.
Regretfully, we cannot discern such granular information for
our current dataset. The remaining 14% of binaries silently
install an extension by modifying the user’s browser profile
stored in google\chrome\userdata\default\preferenc
es.

This ratio is skewed in part by multiple binary versions
distributed by the same author. If we de-duplicate binaries
based on the website hosting the binary, we observe 615
distinct domains in the last year. Of these, 74% serve binaries
that install proxies, while 51% serve binaries that side-load
extensions. As such, we are cautious in drawing conclusions
on whether extension side-loading is secondary to installing
proxies in the wild.

Independent of these behavioral signals, we examine the
labels returned by VirusTotal and Safe Browsing. We find that
AVG flagged 62.5% of binaries for search engine hijacking,
while Sophos and Kaspersky flagged 46% and 39% of binaries
respectively as major adware distributors. Not all binaries
restrict their actions to greyware. Safe Browsing flagged 17%
of ad injection binaries for also installing malware. Like
extensions, our results show that ad injectors are often bundled
with a multitude of unwanted and even malicious software.

3) Networks: We have no mechanism to attribute in-transit
ad injection to the ISPs or the network routes involved.
However, we can compare the discrepancy between the level
of ad injection over HTTP versus HTTPS from our client
DOM reports in Section IV. We observe that 4.5% of Google
properties served to users over HTTPS contain traces of
ad injection, compared to 6.1% of HTTP connections. This
represents a 35% increase for unprotected traffic. Two pos-
sible explanations exist for this discrepancy. Either binaries
restrict tampering to HTTP connections because they lack the

technical components required to hook the network stack after
libraries remove encryption—or, alternatively, there is a large
amount of in-transit tampering.

C. Estimating Ad Injection Caused by Extensions

The Chrome Web Store tracks two metrics surrounding
extensions: (1) an extension’s active install base as determined
from update requests sent by Chrome clients (even for exten-
sions not in the official Web Store); and (2) an extension’s
organic installs—the total number of clients that ever installed
the extension directly from the Chrome Web Store or via
trusted UI elements that refer to the Web Store. We refer to all
active install bases with no organic origin as inorganic installs.
These can occur from binaries side loading extensions or users
installing extensions from third-party websites (now defunct
with the Chrome Web Store lockdown where all extensions
must be in the official Web Store). As these install values are
constantly in flux, we measure both as the maximum value
over the lifetime of an extension.

Figure 10 provides a log-scale CDF of the historical max-
imum user base for every extension (many now defunct). We
find that 50% of ad injectors never acquired more than 10
active users, while the largest user base for a single extension
totaled over 10.7 million users. If we consider the user base
of each extension to be unique, then a total of 103 million
Chrome users at one point had an ad injector installed. Some
of the most successful ad injection extensions are organic
(1.8% of total extensions); combined, they total 11.3 million
organic installs. The remaining 98.2% of extensions are fueled
by inorganic installs. Our results show that extensions play a
major role in the ad injection ecosystem, but that a secondary
delivery mechanism such as a binary is necessary for their
installation.

D. Taking Action on Live Extensions

If we restrict ourselves to extensions that are currently
active (e.g., not taken down from the Chrome Web Store),
there are 249 ad injection extensions in our dataset impacting
a combined 25 million users. We alerted the Chrome Web
Store to these extensions in the event any violated the Chrome
Web Store policy. Of the extensions, the Chrome Web Store
classified 192 as deceptive in nature (e.g., violating the Single
Purpose Policy [19]) that affected 14 million users; 6 were
ad injectors that did not violate the Web Store policies and
affected 28K users; 16 developers had since removed the
ad injection component of their extension; and 35 belonged
to developers now suspended for other reasons. Extensions
removed for Single Purpose Policy violations are not immedi-
ately uninstalled from a user’s machine.8 As such, we observe
no immediate impact from the Web Store’s actions on our
client-side measurement of ad injection levels.

8Client-side extensions that violate Single Purpose Policies may be disabled
on users’ machines if a developer fails to make her extension policy-compliant
within a certain time window.

0%

25%

50%

75%

100%

10
1

10
3

10
5

10
7

Number of installs

P
e
rc

e
n
t
o
f
e
x
te

n
s
io

n
s

active install base organic installs

Figure 10: CDF of maximum active install base and organic installs
for all ad injection extensions. Only 1.8% of ad injection extensions
ever acquire organic installs.

Ad Injection Library Extension
Affiliates

Extension
Coverage

Binary
Affliates

Binary
Coverage

superfish.com 149 88% 21 64%
api.jollywallet.com 127 30% 3 11%
visadd.com 1 0% 0 0%
intext.nav-links.com 18 65% 6 19%
{crdrdpjs, rvzrjs, ...}.info 149 36% 17 0%
ads.tfxiq.com 17 13% 1 7%
clkmon.com 0 0% 1 5%
datafastguru.info 16 3% 0 0%

Table VI: Unique affiliates we detect in dynamic traces of extensions
and binaries, along with the volume of client DOMs that contain
the same affiliate IDs. We obtain more comprehensive coverage of
affiliates in client traffic than via our synthetic execution environment.

E. Estimating Coverage of Ad Injection Software

While we cast a wide net for ad injection software, we
bias our understanding of the ecosystem to the input sources
used by WebEval, Hulk, and Safe Browsing. We estimate our
overall coverage by comparing the affiliate parameters that
appear in extensions and binaries against those appearing in
client DOMs analyzed in Section IV. We show our results in
Table VI. Our coverage of different injectors varies heavily
per affiliate program. Of superfish.com affiliates, we identify
149 IDs in our dynamic extension traces which correlate with
the same IDs in 88% of client DOMs. The same analysis
for binaries yields 21 affiliates accounting for 64% of client
DOMs. The limited affiliates found for visadd.com and clk-
mon.com may result from insufficient browser interaction to
elicit network traces with affiliate IDs. Our results indicate that
we have a substantial sample of ad injection software, though
we do not have complete coverage of all affiliate distribution
techniques in the wild. Between extensions and binaries, our
extensions dataset provides the best coverage of affiliates and
ad injection programs.

VI. IDENTIFYING ADVERTISERS AND INTERMEDIARIES

Money enters the ad injection ecosystem through a tangled
web of advertisers and intermediaries. We explore ads injected

Impacted
Property

Tampered
Trigger Pages

Click
Chains

Ad Injection
Libraries

Extension
Coverage

amazon.com 90 62,237 27 86%
google.com 96 37,718 13 80%
walmart.com 71 15,044 25 91%

Table VII: Breakdown of the revenue chains we collect from ads
injected into Amazon, Google, and Walmart and the distinct queries
ads were sourced from.

on Google, Amazon, and Walmart and identify over 3,000
websites that unwittingly purchase traffic from injectors. As
we show, advertisers rarely have insight into the provenance
of traffic; they only observe parameters tied to the last hop
(e.g., HTTP redirect with a referrer) of the full clickchain.
Accordingly, we illuminate the full chain of ad relationships
that underpin the injection ecosystem and in the process
highlight the intermediaries who can have the greatest impact
on blocking deceptively sourced traffic.

A. Ads Injected on Amazon, Google, & Walmart

We aggregate a total of 114,999 revenue chains from ads
injected by a sample of 398 extensions into Google, Amazon,
and Walmart. These extensions provide overlapping coverage
of all of the top injection libraries. A detailed breakdown of
our dataset appears in Table VII. Of the 300 trigger pages
we visit, 86% successfully induce an injected ad. We observe
an average of 5 iframe ads, 110 divs, 0.4 flash ads, and 15
ad URLs per page. We randomly click one of these elements
and collect the resulting revenue chains to enable studying the
ad ecosystem. These revenue chains consist of every hand-off
that occurs between Amazon, Google, or Walmart until the
advertiser’s landing page.

We provide a sample of a real revenue chain in Figure 11.
When we visit google.com and query for Android, the injec-
tion library for Superfish triggers (Ê) and fetches a list of
advertisements to embed (Ë). We randomly click the BestBuy
offer for $39.99, kicking off a redirect chain through multiple
intermediaries (Í). We finally arrive at the advertiser, BestBuy
(Î). Worth noting, ad injectors cheekily view this as yet
another opportunity for profit. In our example, the injection
libraries in turn laden bestbuy.com with a multitude of rogue
advertisements despite just having been paid by BestBuy to
deliver traffic. We rely on this example as a reference for
terminology used throughout the remainder of this section.

Table VIII shows a breakdown of the top 10 injected ad
domains that start ad revenue chains. These parties are the
primary source of the deceptively sourced traffic that pollutes
the ad ecosystem. As we discussed in Section V, a single
extension will generally maximize its profit by contacting two
to four injection libraries. Our current infrastructure cannot
determine the exact injection library responsible for inserting
a specific ad. As such, we refer to injected ads by the
domain of the first hop in the revenue chain, rather than
the name of the injection library previously used throughout
the paper. In some cases such as superfish.com these are
the same. Conversely, dealply.com represents the amalgam
of all the {crdrpjs, ...}.info injectors. Noticeably absent is

Figure 11: Real example of a clickchain produced from an ad injected on Google that ends at BestBuy (which is then laden with injected
ads).

Injected
Ad Domain

Click
Samples

Avg
Hops

Advertising
Domains

Extension
Coverage

superfish.com 63,891 3.6 891 60%
dealply.com 20,209 9.2 526 29%
datafastguru.info 3,899 4.9 407 25%
display-trk.com 3,353 12.7 196 27%
tfxiq.com 3,091 1.8 58 12%
pangora.com 1,814 2.9 204 5%
xingcloud.com 1,116 1.0 4 <1%
shoppingate.info 994 4.9 232 2%
linkfeed.org 822 6.3 267 12%
bestyoutubedownloader.com 688 1.0 1 3%

Other 15,122 7.48 1,497 100%

Table VIII: Top 10 injected ad domains we observe as the first hop
in click revenue chains and the number of associated advertisers
receiving traffic.

jolleywallet.com; this is because the program relies on affiliate
referrals that do not exist on our trigger websites.

The top 10 injected ad domains contribute 87% of revenue
chains followed by a long tail of over 15,112 distinct ad
domains. We find superfish.com is the most popular source
of traffic in our revenue chains, in part because 60% of the
extensions we execute belong to its affiliate program. It is
followed in popularity by dealply.com and datafastguru.com,
which are contacted by 29% and 25% of extensions in our
synthetic environment. We caution that our dataset is biased
towards these top injected ad domains due their popularity
among the extensions we dynamically execute. As such, we
examine each injector on an individual basis rather than in
aggregate.

Two striking results emerge from our results. First, hundreds
of advertisers (i.e., landing pages) receive traffic from injection
libraries, even for our limited set of 300 product search queries.
We cannot illuminate what volume of ad traffic this repre-
sents in the wild. Secondly, the owners of injection libraries
are closely connected to the ad ecosystem and advertisers.
It takes only 3.9 hops (e.g., intermediaries) before traffic
sourced by superfish.com reaches advertisers and 4.9 hops
for datafastguru.com. Only display-trk.com is far removed at
12.7 hops away, indicating injected traffic requires a more
complicated path before it reaches advertisers. We also observe
landing pages receiving search traffic (xingcloud.com) and
installs (bestyoutubedownloader.com) directly from injectors,
indicating some immediate relationship exists as well.

B. Advertisers and Intermediates For Top Injectors

Given the sheer diversity of revenue paths available to injec-
tion libraries, we narrow our analysis towards the advertisers
and intermediaries impacted by the top 3 injected ad domains
in our revenue chains (and popular in user traffic). These
contribute 77% of all injected ads from 81% of extensions.

Traffic Entry Points into the Ad Ecosystem: Ad injection traffic
enters the ad ecosystem through a small number of paths,
detailed in Table IX. The intermediaries involved in sourcing
ad injection traffic are remarkably similar irrespective of the
injector involved. We find that superfish.com funnels all of
its traffic through three shopping programs: DealTime, Price-
Grabber, and BizRate (also known as ShopZilla). BizRate is
also used by dealply.com (67%) and datafastguru.com (43%).
Each of these e-commerce sites aggregate online product
advertisements. Combined, they represent the single largest
bottleneck in our dataset and are involved in 58% of all revenue
chains from all ad injectors in our synthetic environment.

These shopping programs source creatives from multi-
ple other intermediaries. The most popular is channelintel-
ligence.com—a Google owned property that allows brands to
market products to other e-commerce aggregators—followed
by pronto.com. We note that when ad traffic is provided to
Google from DealTime or other programs, no provenance
information is shared. This prevents Google (and as we discuss
shortly, many intermediaries) from identifying traffic that
originates from injectors with rudimentary filters alone.

Another notable intermediary in sourcing injected ads,
though not sharing any immediate relationships with ad in-
jectors, is adnxs.com. This network is run by AppNexus and
is involved in 15% of revenue chains. Similarly, we see 5%
of all revenue chains go through DoubleClick, a Google ad
exchange. We find that 11% of the traffic going through
DoubleClick originates via AppNexus, the single largest con-
tributor. These relationships highlight the tangled relationships
that underpin injection monetization. Once deceptively sourced
traffic enters the ad ecosystem, it becomes intractable to
distinguish from legitimate traffic.

Advertisers Negatively Impacted by Ad Injector Traffic: We
find a handful of advertisers that are the primary landing
page for traffic from ad injectors, a breakdown of which we
provide in Table X. We assert no culpability on behalf of these

Injected
Ad Domain Intermediary % of

Ads
Hop After

Injector
Hop Before
Advertiser

superfish.com dealtime.com 40% 26% 0%
pricegrabber.com 34% 22% 9%
channelintelligence.com 27% 0% 27%
bizrate.com 23% 23% 1%
searchmarketing.com 11% 0% 9%

Other 18% 30% 54%

dealply.com bizrate.com 67% 57% 2%
superfish.com 43% 0% 9%
channelintelligence.com 21% 0% 18%
amung.com 19% 4% 1%
clk-analytics.com 17% 0% 0%

Other 78% 39% 70%

datafast.com bizrate.com 43% 41% 1%
frontdb.com 28% 0% 10%
pronto.com 21% 15% 0%
channelintelligence.com 19% 0% 17%
adnxs.com 16% 0% 6%

Other 67% 44% 66%

Table IX: Top 5 intermediaries involved in sourcing injected traffic,
broken down per injected ad domain.

Injected
Ad Domain Advertiser % of

Ads
Avg
Hops

Distinct
Intermediaries

superfish.com sears.com 18% 3.3 3
walmart.com 11% 2.9 6
kobobooks.com 6% 2.9 3
target.com 4% 5.1 13
wayfair.com 2% 4.3 11

Other 59% 3.8 4,613

dealply.com target.com 12% 10.5 13
wayfair.com 5% 9.4 18
walmart.com 5% 10.4 15
overstock.com 4% 10.9 11
sears.com 3% 10.5 18

Other 71% 8.7 7,146

datafast.com ebay.com 10% 2.2 60
target.com 10% 5.8 30
bizrate.com 5% 1.1 6
wayfair.com 4% 4.2 15
sears.com 4% 5.4 15

Other 68% 5.4 10,692

Table X: Top 5 advertisers terminating our revenue chains, broken
down per injected ad domain.

advertisers. Sears and Walmart, whom we observe impacted
by all three top injected ad domains, receive 8–29% of our
synthetic traffic from each injector. Other popular brands that
are impacted include Ebay, Target, Wayfair, and Overstock—
all online retailers that specialize in selling consumer products.
Although the remaining set of over 3,000 advertisers is heavy-
tailed, the top 20 advertisers represent a significant bottleneck,
receiving 50% of advertising clicks. Our results highlight that
major brands are negatively impacted by ad injection, of which
our results only reveal a subset. In particular, our current
coverage is biased towards businesses whose product catalogs
heavily overlap with Amazon, Walmart, and Google due to
the popular product queries we evaluate.

C. Awareness of Advertisers and Intermediaries

We examine the degree of information that advertisers and
intermediaries receive about the provenance of ad traffic.
To conduct our analysis, we automatically extract encoded
“affiliate IDs” embedded in each URL tied to injected ad
traffic for the top five advertisers and intermediaries. These
affiliate IDs indicate which ad network acquired traffic for
which advertiser (facilitating payment and auditing in the ad
ecosystem).

We observe that all of the top five advertisers in our dataset
have knowledge of their immediate ad relationships (e.g., the
previous referrer in revenue chains). Beyond this previous
hop visibility, we find only one set of revenue chains that
include more granular provenance information. target.com and
other brands who syndicate advertisements to channelintelli-
gence.com are provided sub-syndication affiliate parameters
such as “pronto df” and “pricegrabber df”. These values
reveal that traffic previously originated from pronto.com and
pricegrabber.com before arriving at channelintelligence.com.
Beyond this exception, we never find evidence that advertisers
obtain finer-grained provenance information that could help
them filter traffic deceptively sourced from ad injection. There
is always at least one intermediary between the ad injector and
advertiser that omits affiliate IDs tied to injectors.

The story for the top intermediaries in our dataset is
different. In particular, we find that intermediaries that share
an immediate connection to ad injectors frequently assign
a consistent affiliate ID that uniquely indicates an injection
library. For some intermediaries this affiliate ID even includes
the injection library’s domain name. This consistent label-
ing suggests these early intermediaries have formal business
relationships with ad injection entities, or at the very least,
awareness of when traffic originates from an ad injector. As a
result, programs like DealTime, PriceGrabber, and ShopZilla
(detailed previously in Table IX) are best positioned to detect
and disincentivize deceptively sourced ads. They serve as the
single critical bottleneck before ad injection traffic enters the
ad ecosystem and becomes indistinguishable from legitimate
consumer interest. Following our analysis, we have begun to
reach out to these major intermediaries as well as the brands
impacted by ad injection to alert them of the possibility of
receiving ad injection traffic.

VII. CASE STUDIES OF NOVEL AD INJECTORS

We conclude our analysis of the ad injection ecosystem with
several in-depth case studies that highlight the financial incen-
tives and novel technical capabilities of individual injectors.

Superfish: Superfish is a VC-backed startup located in Palo
Alto with research and development in Israel. The company
reported earnings of $135K in 2010 and $35M in 2013 [16].
The company focuses on visual search offerings with the goal
of displaying advertisements for similar products as clients
browse the web. Superfish runs its affiliate program via simi-
larproducts.net, which provides a single line of JavaScript that
affiliates embed in browser traffic for drop-in monetization.

The script has code to support injection into 16,925 web-
sites, presenting additional product advertisements for each
supported page. On Google, this yields a bar of images that
appears above organic search results. For Amazon, Superfish
displays additional products at the bottom of the visible screen
area. For other pages, Superfish displays ads as fly-in banners.

In order to fetch advertisements, the Superfish script sends
a request to superfish.com along with a merchantName that
indicates the domain the request originates from (e.g., Google);
documentTitle and pageUrl that reports every site a user
visits; and language, country, and ip parameters. In re-
sponse, superfish.com returns a list of images, prices, and
URLs that the script then injects into the client’s DOM. Per
our clickchain analysis, we find these ads are predominantly
supported by pgpartners.com, bizrate.com, and dealtime.com.

Visadd: Visadd, registered at visadd.com under an anonymiza-
tion service Domains By Proxy, steadily rose in prominence
from 0.5% of page views at the start of our measurement to
1.4% at the time of writing. Like other ad injectors, Visadd
maintains a blacklist of properties it avoids tampering with, in-
cluding google.com, facebook.com and ads.yahoo.com.9 Out-
side these safezones, the script scans for specific keywords
including “add to basket”, “free shipping”, and “product
review” in multiple languages. If found, the script fetches
additional payloads to inject advertisements. Beyond Visadd’s
injection capabilities, we found the script adds event listeners
to every link on a page to remotely report user clicks and
surfing behavior. When we visited the Visadd website, we
came upon an option to uninstall the Visadd injector. However,
at the time of writing, all that happens is a call to function
donothing(){};.

Jsutils, Jscripts, & Webpagescripts: Not all of the ad injection
scripts we observe belong to a single identifiable company. In
fact, we observe at least four scripts whose sole purpose is to
provide drop-in support for several ad injectors simultaneously.
We refer to these scripts as meta-injectors. Examples in
our dataset include jsutils.net, jsutils.com, jscripts.org and
webpagescripts.net. Each of these scripts deliver support for
17 distinct ad injection affiliate programs, including jollywal-
let.com, tfxiq.com, visadd.com and adultadworld.com; some of
the most popular programs we encounter in tampered DOMs.

These meta-injectors maximize the value of injected traf-
fic by supporting both cost-per-click and cost-per-acquisition
models. On top of that, the presence of pornographic-oriented
injection libraries makes up for other injection libraries that
blacklist sexually explicit websites to adhere to commercial ad
exchange policies. This profit maximization has many levels,
where we find that tfxiq.com is configured to fall back onto
yet another round of intermediaries, including adcash.com and
viglink.com, if Tfxiq’s primary ad relationships fail to provide
ad content. The end result is a browsing experience where
essentially no matter what action a user takes, ad injectors
can profit.

9We note that Visadd scripts still appear in client traffic on google.com and
other sites; they merely remain dormant and avoid injecting ads.

VIII. RELATED WORK

Fraud and Abuse in the Ad Ecosystem: Prior work has exten-
sively explored the problem of outright fraud and abuse in ad
networks. In particular, research has focused on the evolution
of botnets towards ad related clickfraud monetization [1], [25]
and the impact of botnet interventions on abusive ad traffic [6],
[26]. Other forms of abuse include the failures of current
ad exchanges to detect distributed clickfraud [33], the ability
for compromised routers and opportunistic ISPs to inject ads
into users’ traffic [29], [34], and the market for impression
fraud via ads hidden underneath other content or served in
invisible windows [32]. In response, researchers have proposed
an array of solutions that attempt to detect fraudulent ad traffic
via bluff ads or anomaly detection [9], [10], [15], [17]. We
believe future research should pay similar attention to the
ad injection affiliate ecosystem in the event malware authors
become affiliates (of which we find initial evidence in our
work) and the possibility of ad injectors serving pop-under or
hidden ads that defraud exchanges.

A sister problem to ad fraud is the emergence of mali-
cious advertisements that leverage ad traffic to fuel malware
installs [14]. Of the Alexa Top 90,000, Li et al. found 1% of
pages served malicious advertisements [24]. While Dong et al.
proposed browser confinement schemes that allow publishers
to load ads in restricted sandboxes [11], it falls on publishers
to adopt such technologies, which are not yet readily available.
Furthermore, while publishers can selectively source creatives
from trustworthy ad exchanges to protect their brand, the
presence of ad injectors in a user’s browsing session place
all such discretion solely into the hands of the injector.

Detecting Website Content Modifications: Our approach for
detecting ad injection draws on a history of proposed remote
verification and enforcement techniques. In the closest work
to our own, Reis et al. propose a technique for client-side
verification of a webpage’s integrity called “web tripwires”
[29]. The core idea is for publishers to include an additional
piece of JavaScript in their webpages that checks if the client-
rendered DOM content matches what publishers expect on
their website. In both our and Reis’s solution, it remains up to
developers to contend with highly dynamic content. Similarly,
both schemes suffer from a lack of a trusted communication
channel; as a result, adversaries with sufficient privileges
can strip out integrity verification code and spoof a valid
response. Seshadri et al. proposed a technique for untampered
code execution on legacy systems [31], but whether such
a technique can be extended to browser kernels to protect
execution in the presence of malicious extensions (as well as
malicious binaries) remains an open challenge.

IX. CONCLUSION

In this paper we presented a detailed investigation into the
negative impact of ad injection and the ecosystem that supports
it. We found that ad injection has entrenched itself as a cross-
browser monetization platform impacting more than 5% of
unique daily IP addresses accessing Google—tens of millions

of users around the globe. Injected ads arrive on a client’s
machine through multiple unwanted and malicious vectors,
with our measurements identifying 50,870 Chrome extensions
and 34,407 Windows binaries, 38% and 17% of which are
explicitly malicious. As part of our analysis, we alerted the
Chrome Web Store of 192 deceptive ad injection extensions
with 14 million user; the Chrome Web Store has since disabled
the extensions. Finally, we determined that ad injectors ulti-
mately derive a profit by delivering deceptively sourced traffic
to over 3,000 brands. This traffic enters the ad ecosystem
through a small bottleneck of e-commerce networks. We have
since reached out and alerted the advertisers and intermediaries
impacted by ad injectors.

In closing, we argue there is no simple solution for combat-
ing deceptive ad injection. Intermediaries, website owners, and
browser developers all share an important role. In particular,
the handful of e-commerce sites who share relationships with
ad injectors are the best positioned to prohibit deceptively
sourced traffic and disincentivize the ad injection ecosystem as
a whole. For example, Google’s ad exchanges expressly pro-
hibit sourcing traffic from ads inserted into websites without
the site owner’s consent [12]. For website owners, developers
can measure their own ad injection levels by executing our
client-side measurement, or go one step further and pre-
vent or revert DOM modifications produced by ad injectors.
Equally important, if websites switched to HSTS it would
prevent network providers and HTTP-only binary proxies
from intercepting and tampering with client traffic. Finally,
browser developers must harden their environments against
side-loading extensions or modifying the browser environment
without user consent. Combined, these strategies represent a
breadth of technical and financial countermeasures to combat
deceptive ad injection.

X. ACKNOWLEDGEMENTS

We thank Petr Marchenko and Aaseesh Marina for in-
sightful feedback and support in developing our ad injection
analysis pipeline. This work was supported in part by the
National Science Foundation under grants 1213157, 1237265,
and 1237076; by the Office of Naval Research MURI grant
N000140911081 and N000141210165; by the U.S. Army
Research Office MURI grant W911NF0910553; and by a
gift from Google. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsors.

REFERENCES

[1] Sumayah A Alrwais, Alexandre Gerber, Christopher W Dunn, Oliver
Spatscheck, Minaxi Gupta, and Eric Osterweil. Dissecting Ghost Clicks:
Ad Fraud via Misdirected Human Clicks. In Proceedings of the 28th
Annual Computer Security Applications Conference, pages 21–30. ACM,
2012.

[2] Amazon. Best Sellers Amazon Best Sellers. http://www.amazon.com/
Best-Sellers/zgbs, 2014.

[3] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman.
Protecting Browsers from Extension Vulnerabilities. In NDSS. Citeseer,
2010.

[4] Nico Black. Superfish Affiliate Summit East. https://www.linkedin.com/
groups/Superfish-Affiliate-Summit-East-4376214.S.263442122, 2014.

[5] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn
Song. Dispatcher: Enabling Active Botnet Infiltration Using Automatic
Protocol Reverse-Engineering. In Proceedings of the ACM Conference
on Computer and Communications Security, Chicago, IL, November
2009.

[6] Chia Yuan Cho, Juan Caballero, Chris Grier, Vern Paxson, and Dawn
Song. Insights From the Inside: A View of Botnet Management from
Infiltration. In USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), 2010.

[7] Devin Coldewey. Marriott Puts An End To Shady
Ad Injection Service. http://techcrunch.com/2012/04/09/
marriott-puts-an-end-to-shady-ad-injection-service/, 2014.

[8] Neil Daswani and Michael Stoppelman. The Anatomy of Clickbot. A.
In Proceedings of the first conference on First Workshop on Hot Topics
in Understanding Botnets, 2007.

[9] Vacha Dave, Saikat Guha, and Yin Zhang. Measuring and fingerprinting
click-spam in ad networks. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols
for computer communication, pages 175–186. ACM, 2012.

[10] Vacha Dave, Saikat Guha, and Yin Zhang. ViceROI: Catching Click-
spam in Search Ad Networks. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 765–776.
ACM, 2013.

[11] Xinshu Dong, Minh Tran, Zhenkai Liang, and Xuxian Jiang. Ad-
Sentry: Comprehensive and Flexible Confinement of JavaScript-based
Advertisements. In Proceedings of the 27th Annual Computer Security
Applications Conference, pages 297–306. ACM, 2011.

[12] DoubleClick. Google DoubleClick Ad Exchange (AdX) Seller Program
Guidelines. http://www.google.com/doubleclick/adxseller/guidelines.
html, 2014.

[13] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and
Peter M. Chen. ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay. In Proceedings of the 2002 Symposium
on Operating Systems Design and Implementation (OSDI), pages 211–
224, December 2002.

[14] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vigna.
Analyzing and detecting malicious flash advertisements. In Computer
Security Applications Conference, 2009. ACSAC’09. Annual, pages 363–
372. IEEE, 2009.

[15] Hamed Haddadi. Fighting online click-fraud using bluff ads. ACM
SIGCOMM Computer Communication Review, 40(2):21–25, 2010.

[16] Inc. Meet the 2014 Inc. 5000: America’s Fastest-Growing Private
Companies. http://www.inc.com/profile/superfish, 2014.

[17] Ari Juels, Sid Stamm, and Markus Jakobsson. Combating click fraud
via premium clicks. In USENIX Security, 2007.

[18] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher
Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Eliciting Malicious
Behavior in Browser Extensions. In Proceedings of the 23rd Usenix
Security Symposium, 2014.

[19] Erik Kay. Keeping chrome extensions simple. http://blog.chromium.org/
2013/12/keeping-chrome-extensions-simple.html, 2013.

[20] Erik Kay. Protecting Chrome users from mali-
cious extensions. http://chrome.blogspot.com/2014/05/
protecting-chrome-users-from-malicious.html, 2014.

[21] David Kravets. Ad-injecting trojan targets Mac users on Safari,
Firefox, and Chrome. http://arstechnica.com/apple/2013/03/
ad-injecting-trojan-targets-mac-users-on-safari-firefox-and-chrome/,
2013.

[22] David Kravets. Comcast Wi-Fi serving self-promotional ads via
JavaScript injection. http://arstechnica.com/tech-policy/2014/09/
why-comcasts-javascript-ad-injections-threaten-security-net-neutrality/,
2014.

[23] Lenovo. Superfish Vulnerability. http://support.lenovo.com/us/en/
product security/superfish, February 2015.

[24] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang.
Knowing your enemy: understanding and detecting malicious web
advertising. In Proceedings of the 2012 ACM conference on Computer
and Communications Security, pages 674–686. ACM, 2012.

[25] Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich, and Vern
Paxson. What’s clicking what? techniques and innovations of today’s
clickbots. In Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 164–183. Springer, 2011.

[26] Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko, Saikat Guha,
Damon McCoy, Vern Paxson, Stefan Savage, and Geoffrey M Voelker.
Characterizing Large-Scale Click Fraud in ZeroAccess. In Proceedings
of the 21st ACM Conference on Computer and Communications Security
(CCS), 2014.

[27] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian
Monrose. All your iFRAMEs point to us. In Proceedings of the 17th
Usenix Security Symposium, 2008.

[28] Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis Mavrommatis,
and Niels Provos. CAMP: Content-Agnostic Malware Protection. In
Symposium on Network and Distributed System Security (NDSS), 2013.

[29] Charles Reis, Steven D Gribble, Tadayoshi Kohno, and Nicholas C
Weaver. Detecting In-Flight Page Changes with Web Tripwires. In
Usenix Symposium on Networked Systems Design and Implementation
(NSDI), 2008.

[30] Sambreel Holdings, LLC vs. Facebook, Inc. http://www.kotchen.com/
Sambreel-v-Facebook/PI Declaration Miller.pdf, 2012.

[31] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van
Doorn, and Pradeep Khosla. Pioneer: Verifying Integrity and Guaran-
teeing Execution of Code on Legacy Platforms. In Proceedings of ACM
Symposium on Operating Systems Principles (SOSP), 2005.

[32] Kevin Springborn and Paul Barford. Impression fraud in on-line
advertising via pay-per-view networks. In 22nd USENIX Security
Symposium, 2013.

[33] Brett Stone-Gross, Ryan Stevens, Apostolis Zarras, Richard Kemmerer,
Chris Kruegel, and Giovanni Vigna. Understanding Fraudulent Activities
in Online Ad Exchanges. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, pages 279–294. ACM,
2011.

[34] Nevena Vratonjic, Julien Freudiger, and Jean-Pierre Hubaux. Integrity
of the web content: The case of online advertising. In CollSec, 2010.

[35] Walmart. Popular Products - Walmart. http://www.walmart.com/c/
popular/, 2014.

[36] WC3. Content Security Policy 1.0. http://www.w3.org/TR/CSP/, 2012.

